Some Positivstellensätze for polynomial matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

Some Properties of Laurent Polynomial Matrices

In the context of multivariate signal processing, factorizations involving so-called para-unitary matrices are relevant as well demonstrated in the book of Vaidyanathan [11], or [4, 1] and more recently in a series of papers by McWhirter and co-authors [5, 6]. However, known factorizations of matrix polynomials, such as the Smith form [10], involve unimodular matrices but usual factorizations s...

متن کامل

some results on the polynomial numerical hulls of matrices

in this note we characterize polynomial numerical hulls of matrices $a in m_n$ such that$a^2$ is hermitian. also, we consider normal matrices $a in m_n$ whose $k^{th}$ power are semidefinite. for such matriceswe show that $v^k(a)=sigma(a)$.

متن کامل

The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices

We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Positivity

سال: 2014

ISSN: 1385-1292,1572-9281

DOI: 10.1007/s11117-014-0312-6